LTP GCOV extension - code coverage report
Current view: directory - usr/include/asm - bitops.h
Test: YAORB-0.2.info
Date: 2006-02-27 Instrumented lines: 3
Code covered: 100.0 % Executed lines: 3

       1                 : #ifndef _I386_BITOPS_H
       2                 : #define _I386_BITOPS_H
       3                 : 
       4                 : /*
       5                 :  * Copyright 1992, Linus Torvalds.
       6                 :  */
       7                 : 
       8                 : #include <linux/config.h>
       9                 : 
      10                 : /*
      11                 :  * These have to be done with inline assembly: that way the bit-setting
      12                 :  * is guaranteed to be atomic. All bit operations return 0 if the bit
      13                 :  * was cleared before the operation and != 0 if it was not.
      14                 :  *
      15                 :  * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
      16                 :  */
      17                 : 
      18                 : #ifdef CONFIG_SMP
      19                 : #define LOCK_PREFIX "lock ; "
      20                 : #else
      21                 : #define LOCK_PREFIX ""
      22                 : #endif
      23                 : 
      24                 : #define ADDR (*(volatile long *) addr)
      25                 : 
      26                 : /**
      27                 :  * set_bit - Atomically set a bit in memory
      28                 :  * @nr: the bit to set
      29                 :  * @addr: the address to start counting from
      30                 :  *
      31                 :  * This function is atomic and may not be reordered.  See __set_bit()
      32                 :  * if you do not require the atomic guarantees.
      33                 :  * Note that @nr may be almost arbitrarily large; this function is not
      34                 :  * restricted to acting on a single-word quantity.
      35                 :  */
      36                 : static __inline__ void set_bit(int nr, volatile void * addr)
      37                 : {
      38                 :         __asm__ __volatile__( LOCK_PREFIX
      39                 :                 "btsl %1,%0"
      40                 :                 :"=m" (ADDR)
      41                 :                 :"Ir" (nr));
      42                 : }
      43                 : 
      44                 : /**
      45                 :  * __set_bit - Set a bit in memory
      46                 :  * @nr: the bit to set
      47                 :  * @addr: the address to start counting from
      48                 :  *
      49                 :  * Unlike set_bit(), this function is non-atomic and may be reordered.
      50                 :  * If it's called on the same region of memory simultaneously, the effect
      51                 :  * may be that only one operation succeeds.
      52                 :  */
      53                 : static __inline__ void __set_bit(int nr, volatile void * addr)
      54                 : {
      55                 :         __asm__(
      56                 :                 "btsl %1,%0"
      57                 :                 :"=m" (ADDR)
      58                 :                 :"Ir" (nr));
      59                 : }
      60                 : 
      61                 : /**
      62                 :  * clear_bit - Clears a bit in memory
      63                 :  * @nr: Bit to clear
      64                 :  * @addr: Address to start counting from
      65                 :  *
      66                 :  * clear_bit() is atomic and may not be reordered.  However, it does
      67                 :  * not contain a memory barrier, so if it is used for locking purposes,
      68                 :  * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
      69                 :  * in order to ensure changes are visible on other processors.
      70                 :  */
      71                 : static __inline__ void clear_bit(int nr, volatile void * addr)
      72                 : {
      73                 :         __asm__ __volatile__( LOCK_PREFIX
      74                 :                 "btrl %1,%0"
      75                 :                 :"=m" (ADDR)
      76              22 :                 :"Ir" (nr));
      77                 : }
      78                 : #define smp_mb__before_clear_bit()      barrier()
      79                 : #define smp_mb__after_clear_bit()       barrier()
      80                 : 
      81                 : /**
      82                 :  * __change_bit - Toggle a bit in memory
      83                 :  * @nr: the bit to change
      84                 :  * @addr: the address to start counting from
      85                 :  *
      86                 :  * Unlike change_bit(), this function is non-atomic and may be reordered.
      87                 :  * If it's called on the same region of memory simultaneously, the effect
      88                 :  * may be that only one operation succeeds.
      89                 :  */
      90                 : static __inline__ void __change_bit(int nr, volatile void * addr)
      91                 : {
      92                 :         __asm__ __volatile__(
      93                 :                 "btcl %1,%0"
      94                 :                 :"=m" (ADDR)
      95                 :                 :"Ir" (nr));
      96                 : }
      97                 : 
      98                 : /**
      99                 :  * change_bit - Toggle a bit in memory
     100                 :  * @nr: Bit to change
     101                 :  * @addr: Address to start counting from
     102                 :  *
     103                 :  * change_bit() is atomic and may not be reordered.
     104                 :  * Note that @nr may be almost arbitrarily large; this function is not
     105                 :  * restricted to acting on a single-word quantity.
     106                 :  */
     107                 : static __inline__ void change_bit(int nr, volatile void * addr)
     108                 : {
     109                 :         __asm__ __volatile__( LOCK_PREFIX
     110                 :                 "btcl %1,%0"
     111                 :                 :"=m" (ADDR)
     112                 :                 :"Ir" (nr));
     113                 : }
     114                 : 
     115                 : /**
     116                 :  * test_and_set_bit - Set a bit and return its old value
     117                 :  * @nr: Bit to set
     118                 :  * @addr: Address to count from
     119                 :  *
     120                 :  * This operation is atomic and cannot be reordered.  
     121                 :  * It also implies a memory barrier.
     122                 :  */
     123                 : static __inline__ int test_and_set_bit(int nr, volatile void * addr)
     124                 : {
     125                 :         int oldbit;
     126                 : 
     127                 :         __asm__ __volatile__( LOCK_PREFIX
     128                 :                 "btsl %2,%1\n\tsbbl %0,%0"
     129                 :                 :"=r" (oldbit),"=m" (ADDR)
     130              10 :                 :"Ir" (nr) : "memory");
     131                 :         return oldbit;
     132                 : }
     133                 : 
     134                 : /**
     135                 :  * __test_and_set_bit - Set a bit and return its old value
     136                 :  * @nr: Bit to set
     137                 :  * @addr: Address to count from
     138                 :  *
     139                 :  * This operation is non-atomic and can be reordered.  
     140                 :  * If two examples of this operation race, one can appear to succeed
     141                 :  * but actually fail.  You must protect multiple accesses with a lock.
     142                 :  */
     143                 : static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
     144                 : {
     145                 :         int oldbit;
     146                 : 
     147                 :         __asm__(
     148                 :                 "btsl %2,%1\n\tsbbl %0,%0"
     149                 :                 :"=r" (oldbit),"=m" (ADDR)
     150                 :                 :"Ir" (nr));
     151                 :         return oldbit;
     152                 : }
     153                 : 
     154                 : /**
     155                 :  * test_and_clear_bit - Clear a bit and return its old value
     156                 :  * @nr: Bit to clear
     157                 :  * @addr: Address to count from
     158                 :  *
     159                 :  * This operation is atomic and cannot be reordered.  
     160                 :  * It also implies a memory barrier.
     161                 :  */
     162                 : static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
     163                 : {
     164                 :         int oldbit;
     165                 : 
     166                 :         __asm__ __volatile__( LOCK_PREFIX
     167                 :                 "btrl %2,%1\n\tsbbl %0,%0"
     168                 :                 :"=r" (oldbit),"=m" (ADDR)
     169                 :                 :"Ir" (nr) : "memory");
     170                 :         return oldbit;
     171                 : }
     172                 : 
     173                 : /**
     174                 :  * __test_and_clear_bit - Clear a bit and return its old value
     175                 :  * @nr: Bit to clear
     176                 :  * @addr: Address to count from
     177                 :  *
     178                 :  * This operation is non-atomic and can be reordered.  
     179                 :  * If two examples of this operation race, one can appear to succeed
     180                 :  * but actually fail.  You must protect multiple accesses with a lock.
     181                 :  */
     182                 : static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
     183                 : {
     184                 :         int oldbit;
     185                 : 
     186                 :         __asm__(
     187                 :                 "btrl %2,%1\n\tsbbl %0,%0"
     188                 :                 :"=r" (oldbit),"=m" (ADDR)
     189                 :                 :"Ir" (nr));
     190                 :         return oldbit;
     191                 : }
     192                 : 
     193                 : /* WARNING: non atomic and it can be reordered! */
     194                 : static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
     195                 : {
     196                 :         int oldbit;
     197                 : 
     198                 :         __asm__ __volatile__(
     199                 :                 "btcl %2,%1\n\tsbbl %0,%0"
     200                 :                 :"=r" (oldbit),"=m" (ADDR)
     201                 :                 :"Ir" (nr) : "memory");
     202                 :         return oldbit;
     203                 : }
     204                 : 
     205                 : /**
     206                 :  * test_and_change_bit - Change a bit and return its new value
     207                 :  * @nr: Bit to change
     208                 :  * @addr: Address to count from
     209                 :  *
     210                 :  * This operation is atomic and cannot be reordered.  
     211                 :  * It also implies a memory barrier.
     212                 :  */
     213                 : static __inline__ int test_and_change_bit(int nr, volatile void * addr)
     214                 : {
     215                 :         int oldbit;
     216                 : 
     217                 :         __asm__ __volatile__( LOCK_PREFIX
     218                 :                 "btcl %2,%1\n\tsbbl %0,%0"
     219                 :                 :"=r" (oldbit),"=m" (ADDR)
     220                 :                 :"Ir" (nr) : "memory");
     221                 :         return oldbit;
     222                 : }
     223                 : 
     224                 : #if 0 /* Fool kernel-doc since it doesn't do macros yet */
     225                 : /**
     226                 :  * test_bit - Determine whether a bit is set
     227                 :  * @nr: bit number to test
     228                 :  * @addr: Address to start counting from
     229                 :  */
     230                 : static int test_bit(int nr, const volatile void * addr);
     231                 : #endif
     232                 : 
     233                 : static __inline__ int constant_test_bit(int nr, const volatile void * addr)
     234                 : {
     235               4 :         return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
     236                 : }
     237                 : 
     238                 : static __inline__ int variable_test_bit(int nr, volatile void * addr)
     239                 : {
     240                 :         int oldbit;
     241                 : 
     242                 :         __asm__ __volatile__(
     243                 :                 "btl %2,%1\n\tsbbl %0,%0"
     244                 :                 :"=r" (oldbit)
     245                 :                 :"m" (ADDR),"Ir" (nr));
     246                 :         return oldbit;
     247                 : }
     248                 : 
     249                 : #define test_bit(nr,addr) \
     250                 : (__builtin_constant_p(nr) ? \
     251                 :  constant_test_bit((nr),(addr)) : \
     252                 :  variable_test_bit((nr),(addr)))
     253                 : 
     254                 : /**
     255                 :  * find_first_zero_bit - find the first zero bit in a memory region
     256                 :  * @addr: The address to start the search at
     257                 :  * @size: The maximum size to search
     258                 :  *
     259                 :  * Returns the bit-number of the first zero bit, not the number of the byte
     260                 :  * containing a bit.
     261                 :  */
     262                 : static __inline__ int find_first_zero_bit(void * addr, unsigned size)
     263                 : {
     264                 :         int d0, d1, d2;
     265                 :         int res;
     266                 : 
     267                 :         if (!size)
     268                 :                 return 0;
     269                 :         __asm__ __volatile__(
     270                 :                 "movl $-1,%%eax\n\t"
     271                 :                 "xorl %%edx,%%edx\n\t"
     272                 :                 "repe; scasl\n\t"
     273                 :                 "je 1f\n\t"
     274                 :                 "xorl -4(%%edi),%%eax\n\t"
     275                 :                 "subl $4,%%edi\n\t"
     276                 :                 "bsfl %%eax,%%edx\n"
     277                 :                 "1:\tsubl %%ebx,%%edi\n\t"
     278                 :                 "shll $3,%%edi\n\t"
     279                 :                 "addl %%edi,%%edx"
     280                 :                 :"=d" (res), "=&c" (d0), "=&D" (d1), "=&a" (d2)
     281                 :                 :"1" ((size + 31) >> 5), "2" (addr), "b" (addr) : "memory");
     282                 :         return res;
     283                 : }
     284                 : 
     285                 : /**
     286                 :  * find_next_zero_bit - find the first zero bit in a memory region
     287                 :  * @addr: The address to base the search on
     288                 :  * @offset: The bitnumber to start searching at
     289                 :  * @size: The maximum size to search
     290                 :  */
     291                 : static __inline__ int find_next_zero_bit (void * addr, int size, int offset)
     292                 : {
     293                 :         unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
     294                 :         int set = 0, bit = offset & 31, res;
     295                 :         
     296                 :         if (bit) {
     297                 :                 /*
     298                 :                  * Look for zero in first byte
     299                 :                  */
     300                 :                 __asm__("bsfl %1,%0\n\t"
     301                 :                         "jne 1f\n\t"
     302                 :                         "movl $32, %0\n"
     303                 :                         "1:"
     304                 :                         : "=r" (set)
     305                 :                         : "r" (~(*p >> bit)));
     306                 :                 if (set < (32 - bit))
     307                 :                         return set + offset;
     308                 :                 set = 32 - bit;
     309                 :                 p++;
     310                 :         }
     311                 :         /*
     312                 :          * No zero yet, search remaining full bytes for a zero
     313                 :          */
     314                 :         res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
     315                 :         return (offset + set + res);
     316                 : }
     317                 : 
     318                 : /**
     319                 :  * ffz - find first zero in word.
     320                 :  * @word: The word to search
     321                 :  *
     322                 :  * Undefined if no zero exists, so code should check against ~0UL first.
     323                 :  */
     324                 : static __inline__ unsigned long ffz(unsigned long word)
     325                 : {
     326                 :         __asm__("bsfl %1,%0"
     327                 :                 :"=r" (word)
     328                 :                 :"r" (~word));
     329                 :         return word;
     330                 : }
     331                 : 
     332                 : #ifdef __KERNEL__
     333                 : 
     334                 : /**
     335                 :  * ffs - find first bit set
     336                 :  * @x: the word to search
     337                 :  *
     338                 :  * This is defined the same way as
     339                 :  * the libc and compiler builtin ffs routines, therefore
     340                 :  * differs in spirit from the above ffz (man ffs).
     341                 :  */
     342                 : static __inline__ int ffs(int x)
     343                 : {
     344                 :         int r;
     345                 : 
     346                 :         __asm__("bsfl %1,%0\n\t"
     347                 :                 "jnz 1f\n\t"
     348                 :                 "movl $-1,%0\n"
     349                 :                 "1:" : "=r" (r) : "rm" (x));
     350                 :         return r+1;
     351                 : }
     352                 : 
     353                 : /**
     354                 :  * hweightN - returns the hamming weight of a N-bit word
     355                 :  * @x: the word to weigh
     356                 :  *
     357                 :  * The Hamming Weight of a number is the total number of bits set in it.
     358                 :  */
     359                 : 
     360                 : #define hweight32(x) generic_hweight32(x)
     361                 : #define hweight16(x) generic_hweight16(x)
     362                 : #define hweight8(x) generic_hweight8(x)
     363                 : 
     364                 : #endif /* __KERNEL__ */
     365                 : 
     366                 : #ifdef __KERNEL__
     367                 : 
     368                 : #define ext2_set_bit                 __test_and_set_bit
     369                 : #define ext2_clear_bit               __test_and_clear_bit
     370                 : #define ext2_test_bit                test_bit
     371                 : #define ext2_find_first_zero_bit     find_first_zero_bit
     372                 : #define ext2_find_next_zero_bit      find_next_zero_bit
     373                 : 
     374                 : /* Bitmap functions for the minix filesystem.  */
     375                 : #define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr)
     376                 : #define minix_set_bit(nr,addr) __set_bit(nr,addr)
     377                 : #define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr)
     378                 : #define minix_test_bit(nr,addr) test_bit(nr,addr)
     379                 : #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size)
     380                 : 
     381                 : #endif /* __KERNEL__ */
     382                 : 
     383                 : #endif /* _I386_BITOPS_H */

Generated by: LTP GCOV extension version 1.4